460 research outputs found

    Transport properties of armchair graphene nanoribbon junctions between graphene electrodes

    Full text link
    The transmission properties of armchair graphene nanoribbon junctions between graphene electrodes are investigated by means of first-principles quantum transport calculations. First the dependence of the transmission function on the size of the nanoribbon has been studied. Two regimes are highlighted: for small applied bias transport takes place via tunneling and the length of the ribbon is the key parameter that determines the junction conductance; at higher applied bias resonant transport through HOMO and LUMO starts to play a more determinant role, and the transport properties depend on the details of the geometry (width and length) of the carbon nanoribbon. In the case of the thinnest ribbon it has been verified that a tilted geometry of the central phenyl ring is the most stable configuration. As a consequence of this rotation the conductance decreases due to the misalignment of the pipi orbitals between the phenyl ring and the remaining part of the junction. All the computed transmission functions have shown a negligible dependence on different saturations and reconstructions of the edges of the graphene leads, suggesting a general validity of the reported results

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200

    Role of the spin-orbit splitting and the dynamical fluctuations in the Si(557)-Au surface

    Get PDF
    Our it ab initio calculations show that spin-orbit coupling is crucial to understand the electronic structure of the Si(557)-Au surface. The spin-orbit splitting produces the two one-dimensional bands observed in photoemission, which were previously attributed to spin-charge separation in a Luttinger liquid. This spin splitting might have relevance for future device applications. We also show that the apparent Peierls-like transition observed in this surface by scanning tunneling microscopy is a result of the dynamical fluctuations of the step-edge structure, which are quenched as the temperature is decreased

    Zigzag equilibrium structure in monatomic wires

    Full text link
    We have applied first-principles density-functional calculations to the study of the energetics, and the elastic and electronic properties of monatomic wires of Au, Cu, K, and Ca in linear and a planar-zigzag geometries. For Cu and Au wires, the zigzag distortion is favorable even when the linear wire is stretched, but this is not observed for K and Ca wires. In all the cases, the equilibrium structure is an equilateral zigzag (bond angle of 60o^{\rm o}). Only in the case of Au, the zigzag geometry can also be stabilized for an intermediate bond angle of 131o^{\rm o}. The relationship between the bond and wire lengths is qualitatively different for the metallic (Au, Cu and, K) and semiconducting (Ca) wires.Comment: 4 pages with 3 postscript figures. To appear in Surf. Science (proceedings of the European Conference on Surface Science, ECOSS-19, Madrid Sept. 2000

    Universal Magnetic Properties of sp3^3-type Defects in Covalently Functionalized Graphene

    Get PDF
    Using density-functional calculations, we study the effect of sp3^3-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {\it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 μB\mu_B always appears in graphene. This effect is similar to that of H adsorption, which saturates one pzp_z orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several pzp_z orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means

    First principles study of the adsorption of C60 on Si(111)

    Full text link
    The adsorption of C60 on Si(111) has been studied by means of first-principles density functional calculations. A 2x2 adatom surface reconstruction was used to simulate the terraces of the 7x7 reconstruction. The structure of several possible adsorption configurations was optimized using the ab initio atomic forces, finding good candidates for two different adsorption states observed experimentally. While the C60 molecule remains closely spherical, the silicon substrate appears quite soft, especially the adatoms, which move substantially to form extra C-Si bonds, at the expense of breaking Si-Si bonds. The structural relaxation has a much larger effect on the adsorption energies, which strongly depend on the adsorption configuration, than on the charge transfer.Comment: 4 pages with 3 postscript figures, to appear in Surf. Science. (proceedings of the European Conference on Surface Science ECOSS-19, Sept 2000

    Electronic structure interpolation via atomic orbitals

    Full text link
    We present an efficient scheme for accurate electronic structure interpolations based on the systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse kk-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals (LCAO) algorithms. We find that usually 16 -- 25 orbitals per atom can give an accuracy of about 10 meV compared to the full {\it ab initio} calculations. The current scheme has several advantages over the existing interpolation schemes. The scheme is easy to implement and robust which works equally well for metallic systems and systems with complex band structures. Furthermore, the atomic orbitals have much better transferability than the Shirley's basis and Wannier functions, which is very useful for the perturbation calculations

    Electronic structure and dimerization of a single monatomic gold wire

    Full text link
    The electronic structure of a single monatomic gold wire is presented for the first time. It has been obtained with state-of-the-art ab-initio full-potential density-functional (DFT) LMTO (linearized muffin-tin orbital) calculations taking into account relativistic effects. For stretched structures in the experimentally accessible range the conduction band is exactly half-filled, whereas the band structures are more complex for the optimized structure. By studying the total energy as a function of unit-cell length and of a possible bond-length alternation we find that the system can lower its total energy by letting the bond lengths alternate leading to a structure containing separated dimers with bond lengths of about 2.5 \AA, largely independent of the stretching. However, first for fairly large unit cells (above roughly 7 \AA), is the total-energy gain upon this dimerization comparable with the energy costs upon stretching. We propose that this together with band-structure effects is the reason for the larger interatomic distances observed in recent experiments. We find also that although spin-orbit couplings lead to significant effects on the band structure, the overall conclusions are not altered, and that finite Au_2, Au_4, and Au_6 chains possess electronic properties very similar to those of the infinite chain.Comment: (14 pages, 5 figures; Elsevier Preprint style elsart.sty
    corecore